Data Science and Big Data Analysis

This module will provide an introduction to the most fundamental data analytic tools and techniques, and will teach students how to use specialised software to analyse real-world data and answer policy-relevant questions.

Data Science is an exciting new area that combines scientific inquiry, statistical knowledge, substantive expertise, and computer programming. One of the main challenges for businesses and policy makers when using big data is to find people with the appropriate skills.

This module will cover classic topics in data analysis (regression, binary models, and panel data) and introduce more specialised techniques, such as classification and decision trees, clustering and pattern recognition, and dimensionality reduction.

It will cover data preparation and processing, including working with structured, key-value formatted (JSON), and unstructured data.

Target group

This is a level two module (equivalent to second year undergraduate). Successful completion of a first year undergraduate level module in statistics and experience of using statistical computer software is a requirement for this module.

Course aim

Upon successful completion of this module, students will:

Have a sound understanding of the field of data science and have developed the ability to analyse real-world data using some of its main methods;

Be comfortable with descriptive and predictive analytics, and their application to big data problems;

Have gained a solid foundation for more advanced or more specialised study in this area.